Nanoscience is the study of molecules and molecular structures, called nanostructures, having one or more dimensions less than about 100 nanometers. One nanometer is one-billionth of a meter: 1 nm = 10-9 m. To grasp this level of smallness, a stack of 10 hydrogen atoms would have a height of 1 nm, while a human hair has a diameter of about 50,000 nm. Nanotechnology is the engineering of nanostructures into useful products. At the nanotechnology scale, behavior may differ from our macroscopic expectations. For example, the averaging used to assign property values at a point in the continuum model may no longer apply owing to the interactions among the atoms under consideration. Also, at these scales, the nature of physical phenomena such as current flow may depend explicitly on the physical size of devices. After many years of fruitful research, nanotechnology is now poised to provide new products with a broad range of uses, including implantable chemotherapy devices, biosensors for glucose detection in diabetics, novel electronic devices, new energy conversion technologies, and smart materials as, for example, fabrics that allow water vapor to escape while keeping liquid water out.



Nanoscale Machines on the Move

Engineers working in the field of nanotechnology, the engineering of molecular-sized devices, look forward to the time when practical nanoscale machines can be fabricated that are capable of movement, sensing and responding to stimuli such as light and sound, delivering medication within the body, performing computations, and numerous other functions that promote human well-being. For inspiration, engineers study biological nanoscale machines in living things that perform functions such as creating and repairing cells, circulating oxygen, and digesting food. These studies have yielded positive results. Molecules mimicking the function of mechanical devices have been fabricated, including gears, rotors, ratchets, brakes, switches, and abacus-like structures. A particular success is the development of molecular motors that convert light to rotary or linear motion. According to researchers, Although devices produced thus far are rudimentary, they do demonstrate the feasibility of constructing nanomachines.



Fig. Molecular Motor


Subscribe and receive the following...

  • Blog and News updates
  • Forum Discussions
  • Tutorial alerts

%d bloggers like this: