All activities in nature involve some interaction between energy and matter; thus it is hard to imagine an area that does not relate to thermal‑fluid sciences in some manner. Therefore, developing a good understanding of basic principles of thermal‑fluid sciences has long been an essential part of engineering education.

Human body

Thermal‑fluid sciences are commonly encountered in many engineering systems and other aspects of life, and one does not need to go very far to see some application areas of them. In fact, one does not need to go anywhere. The heart is constantly pumping blood to all parts of the human body, various energy conversions occur in trillions of body cells, and the body heat generated is constantly rejected to the environment. Human comfort is closely tied to the rate of this metabolic heat rejection. We try to control this heat transfer rate by adjusting our clothing to the environmental conditions. Also, any defect in the heart and the circulatory system is a major cause for alarm.

Domestic level

Other applications of thermal‑fluid sciences are right where one lives. An ordinary house is, in some respects, an exhibition hall filled with wonders of thermal‑fluid sciences. Many ordinary household utensils and appliances are designed, in whole or in part, by using the principles of thermal‑fluid sciences. Some examples include the electric or gas range, heating and air‑conditioning systems, refrigerator, humidifier, pressure cooker, water heater, shower, iron, plumbing and sprinkling systems, and even the computer, TV, and DVD player.

thermal‑fluid

Large scale applications

On a larger scale, thermal‑fluid sciences play a major part in the design and analysis of automotive engines, rockets, jet engines, and conventional or nuclear power plants, solar collectors, the transportation of water, crude oil, and natural gas, the water distribution systems in cities, and the design of vehicles from ordinary cars to airplanes (Fig. 1–2). The energy‑efficient home that you may be living in, for example, is designed on the basis of minimizing heat loss in winter and heat gain in summer. The size, location, and the power input of the fan of your computer is also selected after a thermodynamic, heat transfer, and fluid flow analysis of the computer.

Reference

  • Fundamentals of Thermal-Fluid Sciences by Yunus A. Cengel

Subscribe and receive the following...

  • Blog and News updates
  • Forum Discussions
  • Tutorial alerts

%d bloggers like this: